000 11322nam a2200553 i 4500
001 99129136438006421
003 OSt
005 20251022100918.0
006 m o d |
007 cr cnu||||||||
008 231013s2023 sz a ob 000 0 eng d
020 _a3031421124
035 _a(MiAaPQ)EBC30765494
035 _a(Au-PeEL)EBL30765494
035 _a(PPN)272735078
035 _a(CKB)28443972900041
035 _a(EXLCZ)9928443972900041
040 _aMiAaPQ
_beng
_erda
_epn
_cAMIU
_dMiAaPQ
050 4 _aR858
_b.C877 2023
082 0 _a610.285
_223
082 _a610.285
245 0 0 _aCurrent and Future Trends in Health and Medical Informatics /
_cKevin Daimi, Abeer Alsadoon, and Sara Seabra Dos Reis, editors.
250 _aFirst edition.
264 1 _aCham, Switzerland :
_bSpringer Nature Switzerland AG,
_c[2023]
264 4 _c©2023
300 _a1 online resource (379 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aStudies in Computational Intelligence Series ;
_vVolume 1112
504 _aIncludes bibliographical references.
505 0 _aIntro -- Preface -- Acknowledgements -- Contents -- About the Editors -- Medical Imaging and 3D/4D Surgical Visualization -- Analysis of Brain Subregions by Segmentation of MRIs Using Improved BAT Optimization -- 1 Introduction -- 2 Related Work -- 3 Methods and Materials -- 3.1 Dataset -- 3.2 Image Preprocessing -- 3.3 Segmentation -- 3.4 Classification -- 4 Results and Discussion -- 5 Conclusions -- References -- Enhancing Medical Imaging with Computational Modeling for Aortic Valve Disease Intervention Planning -- 1 Introduction -- 1.1 Cardiovascular Disease -- 1.2 Aortic Valve Stenosis and Associated Cardiovascular Pathologies -- 2 Cardiovascular Imaging Techniques for Diagnosis and Intervention Planning -- 2.1 Echocardiography -- 2.2 Computed Tomography (CT) -- 2.3 Magnetic Resonance Imaging (MRI) -- 3 Intervention Planning and Post Operation Complications -- 3.1 Surgical and Minimally Invasive Options for Aortic Valve Intervention -- 3.2 Managing Complications Post-intervention -- 4 Computational Modeling -- 4.1 Cardiovascular Hemodynamic Modelling -- 4.2 Image Analysis, Geometry Reconstruction and Meshing -- 4.3 Personalized Computational Modelling -- 4.4 Artificial Intelligence and Machine Learning Application in Cardiovascular Pathophysiology -- 5 Challenges and Limitations of Computational Modeling -- 5.1 Accuracy and Validation Challenges -- 5.2 Limitations of Current Computational Models -- 6 Future Perspectives and Emerging Technologies -- References -- Construction of an Algorithm for Three-Dimensional Bone Segmentation from Images Obtained by Computational Tomography -- 1 Introduction -- 2 Background -- 3 Materials -- 4 Methodology, Results and Discussion -- 4.1 Morphological Study -- 4.2 Ground Truth Determination -- 4.3 Validation Metrics -- 4.4 Segmentation Based on Morphological Filters.
505 8 _a4.5 Segmentation by Active Contour Methods -- 4.6 3D Model -- 5 Conclusions -- References -- Healthcare/Medical Information Systems Supporting Patients and the Public -- Point-of-Care Devices in Healthcare: A Public Health Perspective -- 1 Introduction -- 2 Public Health Implications of POC -- 2.1 Patient Engagement and Health Literacy -- 2.2 Health Inequity -- 2.3 Detecting Undetected Conditions -- 2.4 Big Data Mining and Knowledge Discovery -- 2.5 Impact on Healthcare Systems and Health Promotion -- 3 Challenges and Limitations -- 3.1 Data Management and Integration -- 3.2 Transfer Protocols and Connectivity -- 3.3 Performance and Calibration -- 4 A Framework for POC Device Regulation -- 4.1 POC Assessment Factors -- 4.2 Lack of a Global Repository -- 4.3 Proposed Framework for POC Device Regulations -- 5 Conclusion -- References -- Digital Platforms to Support Feedback Processing in Aged Care Homes: Friend or Foe? -- 1 Introduction -- 2 Background -- 3 Methodology -- 4 Data Analysis -- 4.1 Participants -- 4.2 Applying Thematic Analysis -- 5 Discussion -- 6 Conclusion -- References -- State of Digital Health Communication Infrastructure in LMICs: Theory, Standards and Factors Affecting Their Implementation -- 1 Introduction -- 2 Literature Review -- 2.1 Current Practice of Standardisation by the Country's National Standardisation Bodies -- 2.2 Theory and Frameworks for Standardisation -- 3 Methods -- 4 Results -- 4.1 Demographics of Respondents -- 4.2 Standardisation Practice in Uganda -- 4.3 Factors Affecting Implementation of DHCI Standards in Uganda -- 5 Discussion -- 5.1 Practice of DHCI Standardisation in Uganda, an Example of Resource-Constrained Setting -- 5.2 Factors Affecting Implementation of DHCI Standards in Uganda -- 6 Conclusion -- References -- Management of Healthcare and Medical Information Systems.
505 8 _aUnpacking Privacy Calculus and Interplay of Data Privacy and Healthcare: Paths Towards Safeguarding Patient Empowerment -- 1 Introduction -- 2 Understanding Patient Data and Its' Uses -- 2.1 Clinical Uses of Patient Data -- 2.2 Consumer Uses of Patient Data -- 2.3 Uses of Patient Data in Research and Analytics -- 3 Data Privacy Implications Centered Around Current Modern Healthcare Landscape -- 3.1 Impact of Big Data in Patient Empowerment and Improving Healthcare Management efficacy in Healthcare Ecosystem -- 3.2 Burgeoning Growth of Data Comes with Serious Privacy Threats -- 3.3 Major Data Privacy Implications Centered Around Current Modern Healthcare Landscape -- 4 Privacy Calculus: Impacts on Patient Empowerment and Healthcare Management -- 4.1 Privacy Calculus in Current Modern Healthcare Landscape -- 4.2 Privacy Calculus and Healthcare Management Efficacy -- 5 Healthcare Regulations to Address Privacy Calculus -- 5.1 Common Healthcare Regulations&amp -- Its Objectives -- 5.2 Impact of Healthcare Regulations in Addressing Privacy Calculus -- 6 Conclusion -- References -- Effects of Caregiver Support in the Adoption of Assistive Technologies for Online Patient Health Self-management -- 1 Introduction -- 2 Materials and Methods -- 2.1 Chronic Disease Self-Management -- 2.2 Model and Background Theory -- 2.3 Data Collection and Common Method Bias -- 3 Results -- 3.1 Internet-Panel Study Results -- 3.2 In-Person Study Results -- 3.3 Data Grouping -- 3.4 Individual Item and Construct Reliability Test -- 3.5 Model Analysis -- 4 Discussion -- 4.1 Analysis -- 4.2 Overall Model Assessment -- 4.3 Explanations -- 4.4 Conclusions -- 4.5 Future Research -- References -- Design and Analysis of Health/Medical Records -- Standards for Structure in Clinical Therapy -- 1 Case Conceptualisation -- 2 A Clinical Approach -- 2.1 Conceptual Foundations.
505 8 _a3 Dynamic Modelling -- 4 Application of Methods -- 5 Discussion -- 6 Conclusion -- References -- Obstetric Ultrasound Modelling and Analysis with Fractal Interpolation Methods -- 1 Introduction -- 2 Iterated Function System -- 3 Fractal Interpolation Functions -- 3.1 Affine Fractal Interpolation Functions -- 3.2 Piecewise Affine Fractal Interpolation Functions -- 3.3 Affine Fractal Interpolation Curves -- 3.4 The Fractal Dimension of an AFIC -- 4 Application to Medical Imaging -- 5 Conclusions -- References -- Healthcare/Medical Networking and Care Sharing -- Predicting the Relationship Between Meal Frequency and Type 2 Diabetes: Empirical Study Using Machine and Deep Learning -- 1 Introduction -- 2 Literature Review -- 2.1 Relationship Between Meal Frequency and Diabetes -- 2.2 Machine Learning Model Selection -- 2.3 Predictor Selection -- 3 Method -- 3.1 Data Collection -- 3.2 Data Pre-possessing -- 3.3 Feature Selection -- 3.4 Data Cleaning -- 3.5 Model Algorithm Selection -- 3.6 Evaluation -- 4 Result and Discussion -- 4.1 Baseline Characteristic -- 4.2 Model Accuracy -- 4.3 Importance of Meal Frequency -- 4.4 Meal Frequency with Late-night-dinner Eating -- 5 Limitations -- 6 Conclusion and Future Works -- References -- Healthcare/Medical Data Representation and Analysis -- Non-stationary Intrinsic Feature Assessment of Health/Medical Data Representation - Blood Pulse Signal for Example -- 1 Background -- 2 Morphology Assessment -- 3 Intrinsic Feature Representation -- 4 Spectral Assessment -- 5 Adaptive Spectral Assessment -- 6 Multi-Dimensional Assessment -- 7 Conclusion -- References -- Federated Learning: An Alternative Approach to Improving Medical Data Privacy and Security -- 1 Introduction -- 2 Literature Review -- 2.1 Medical Data: Definition, Sources, and Stakeholders in Data-Sharing.
505 8 _a2.2 Challenges to Accessing Medical Data for Predictive Modelling -- 2.3 Existing Data Protection Approaches -- 3 Emerging AI-Based Solution: Federated Learning -- 3.1 Applications in Healthcare -- 3.2 Benefits of Federated Learning -- 3.3 Challenges of Federated Learning -- 3.4 Types of Federated Learning Algorithms -- 3.5 Federated Learning Literature Review Summary -- 4 Conclusion -- References -- Simulation and Modelling in Healthcare -- Analysis and Application of Regression Models to ICU Patient Monitoring -- 1 Introduction -- 2 Related Work -- 3 Materials -- 4 Methods -- 4.1 Research Framework -- 4.2 Preprocesing -- 4.3 Regression Models -- 4.4 Results -- 5 Experimental Methodology -- 6 Results and Discussion -- 6.1 Results -- 6.2 Discussion -- 7 Conclusions -- References -- Total Hip Arthroplasty Modelling and Load Simulation, in COMSOL Multiphysics -- 1 Introduction -- 1.1 Anatomy and Biomechanics of the Hip Joint -- 1.2 Uncemented Prosthesis -- 1.3 Distribution of Forces on the Femur -- 1.4 Biomaterials -- 1.5 Finite Element Method-COMSOL Multiphysics -- 2 Methodology -- 2.1 Geometry -- 2.2 Material Properties -- 2.3 Physical Interface-Solid Mechanics -- 2.4 Computational Mesh -- 2.5 Studies Performed -- 3 Results and Discussion -- 3.1 Stationary Stress Studies -- 3.2 Stationary Strain and Deformation Studies -- 3.3 Dynamic Studies -- 4 Conclusion -- References -- Health and Medical Informatics Education -- Work Disability Risk Prediction Using Machine Learning -- 1 Introduction -- 2 What Are the Stakeholders in the Work Disability Risk Prediction? -- 3 How Work Disability Risk Can Be Predicted Using Machine Learning? -- 3.1 Data -- 3.2 MHealth -- 3.3 MPension -- 3.4 Comparison of MHealth and MPension -- 4 What Are the Aspects of Ethical AI in the Work Disability Risk Prediction?.
505 8 _a5 How Explainable Are the ML Methods for Work Disability Risk Prediction?.
583 _aCataloging Notes:
_c20251022
_kSTAMIU-0199STAMIU-0199
588 _aDescription based on print version record.
650 0 _aMedical informatics.
700 1 _aDaimi, Kevin,
_eeditor.
700 1 _aAlsadoon, Abeer,
_eeditor.
700 1 _aSeabra Dos Reis, Sara,
_eeditor.
776 0 8 _iPrint version:
_aDaimi, Kevin
_tCurrent and Future Trends in Health and Medical Informatics
_dCham : Springer,c2023
_z9783031421112
830 0 _aStudies in computational intelligence ;
_vVolume 1112.
856 _uhttps://buku.app/details/187609
_yhttps://buku.app/details/187609
_zAccess Online at BUKU
906 _aBOOK
942 _2lcc
_cEBK
_n0
999 _c21709
_d21709