000 04039cam a22006371i 4500
001 9781003031574
003 FlBoTFG
005 20220724194541.0
006 m d
007 cr |||||||||||
008 200915s2020 flua ob 001 0 eng d
040 _aOCoLC-P
_beng
_erda
_epn
_cOCoLC-P
020 _a9781000223361
_q(ePub ebook)
020 _a1000223361
020 _a9781000223347
_q(PDF ebook)
020 _a1000223345
020 _a9781000223354
_q(Mobipocket ebook)
020 _a1000223353
020 _a9781003031574
_q(ebook)
020 _a1003031579
020 _z9780367468644 (hbk.)
024 7 _a10.1201/9781003031574
_2doi
035 _a(OCoLC)1233321295
035 _a(OCoLC-P)1233321295
050 4 _aQA641
072 7 _aMAT
_x004000
_2bisacsh
072 7 _aSCI
_x040000
_2bisacsh
072 7 _aMAT
_x012000
_2bisacsh
072 7 _aPHU
_2bicssc
082 0 4 _a516.36
_223
100 1 _aCouto, Ivo Terek,
_eauthor.
245 1 0 _aIntroduction to Lorentz geometry :
_bcurves and surfaces /
_cIvo Terek Couto, Alexandre Lymberopoulos.
250 _a1st.
264 1 _aBoca Raton :
_bChapman & Hall/CRC,
_c2020.
300 _a1 online resource :
_billustrations (black and white)
336 _atext
_2rdacontent
336 _astill image
_2rdacontent
337 _acomputer
_2rdamedia
338 _aonline resource
_2rdacarrier
500 _aTranslated from the Portuguese.
500 _a<P>1. Welcome to Lorentz-Minkowski Space. 1.1. Pseudo-Euclidean Spaces. 1.2. Subspaces of<STRONG> RQe</STRONG>. 1.3. Contextualization in Special Relativity. 1.4. Isometries in RQe. 1.5. Investigating O1(2, <B>R</B>) And O1(3, <B>R</B>). 1.6 Cross Product in <STRONG>RQe</STRONG>. 2. Local Theory of Curves. 2.1. Parametrized Curves in <STRONG>RQe</STRONG>. 2.2. Curves in the Plane. 2.3. Curves in Space. 3. Surfaces in Space. 3.1. Basic Topology of Surfaces. 3.2. Casual type of Surfaces, First Fundamental Form. 3.3. Second Fundamental Form and Curvatures. 3.4. The Diagonalization Problem. 3.5. Curves in Surface. 3.6. Geodesics, Variational Methods and Energy. 3.7. The Fundamental Theorem of Surfaces. 4. Abstract Surfaces and Further Topics. 4.1. Pseudo-Riemannian Metrics. 4.2. Riemann's Classification Theorem. 4.3. Split-Complex Numbers and Critical Surfaces. 4.4 Digression: Completeness and Causality</P>
520 _aLorentz Geometry is a very important intersection between Mathematics and Physics, being the mathematical language of General Relativity. Learning this type of geometry is the first step in properly understanding questions regarding the structure of the universe, such as: What is the shape of the universe? What is a spacetime? What is the relation between gravity and curvature? Why exactly is time treated in a different manner than other spatial dimensions? Introduction to Lorentz Geometry: Curves and Surfaces intends to provide the reader with the minimum mathematical background needed to pursue these very interesting questions, by presenting the classical theory of curves and surfaces in both Euclidean and Lorentzian ambient spaces simultaneously. Features: Over 300 exercises Suitable for senior undergraduates and graduates studying Mathematics and Physics Written in an accessible style without loss of precision or mathematical rigor Solution manual available on www.routledge.com/9780367468644
588 _aOCLC-licensed vendor bibliographic record.
650 0 _aGeometry, Differential.
650 0 _aLorentz transformations.
650 0 _aCurves.
650 0 _aSurfaces.
650 0 _aMathematical physics.
650 7 _aMATHEMATICS / Arithmetic
_2bisacsh
650 7 _aSCIENCE / Mathematical Physics
_2bisacsh
650 7 _aMATHEMATICS / Geometry / General
_2bisacsh
700 1 _aLymberopoulos, Alexandre,
_eauthor.
856 4 0 _3Read Online
_uhttps://www.taylorfrancis.com/books/9781003031574
856 4 2 _3OCLC metadata license agreement
_uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
942 _2lcc
_cEBK
999 _c18779
_d18779