000 | 04039cam a22006371i 4500 | ||
---|---|---|---|
001 | 9781003031574 | ||
003 | FlBoTFG | ||
005 | 20220724194541.0 | ||
006 | m d | ||
007 | cr ||||||||||| | ||
008 | 200915s2020 flua ob 001 0 eng d | ||
040 |
_aOCoLC-P _beng _erda _epn _cOCoLC-P |
||
020 |
_a9781000223361 _q(ePub ebook) |
||
020 | _a1000223361 | ||
020 |
_a9781000223347 _q(PDF ebook) |
||
020 | _a1000223345 | ||
020 |
_a9781000223354 _q(Mobipocket ebook) |
||
020 | _a1000223353 | ||
020 |
_a9781003031574 _q(ebook) |
||
020 | _a1003031579 | ||
020 | _z9780367468644 (hbk.) | ||
024 | 7 |
_a10.1201/9781003031574 _2doi |
|
035 | _a(OCoLC)1233321295 | ||
035 | _a(OCoLC-P)1233321295 | ||
050 | 4 | _aQA641 | |
072 | 7 |
_aMAT _x004000 _2bisacsh |
|
072 | 7 |
_aSCI _x040000 _2bisacsh |
|
072 | 7 |
_aMAT _x012000 _2bisacsh |
|
072 | 7 |
_aPHU _2bicssc |
|
082 | 0 | 4 |
_a516.36 _223 |
100 | 1 |
_aCouto, Ivo Terek, _eauthor. |
|
245 | 1 | 0 |
_aIntroduction to Lorentz geometry : _bcurves and surfaces / _cIvo Terek Couto, Alexandre Lymberopoulos. |
250 | _a1st. | ||
264 | 1 |
_aBoca Raton : _bChapman & Hall/CRC, _c2020. |
|
300 |
_a1 online resource : _billustrations (black and white) |
||
336 |
_atext _2rdacontent |
||
336 |
_astill image _2rdacontent |
||
337 |
_acomputer _2rdamedia |
||
338 |
_aonline resource _2rdacarrier |
||
500 | _aTranslated from the Portuguese. | ||
500 | _a<P>1. Welcome to Lorentz-Minkowski Space. 1.1. Pseudo-Euclidean Spaces. 1.2. Subspaces of<STRONG> RQe</STRONG>. 1.3. Contextualization in Special Relativity. 1.4. Isometries in RQe. 1.5. Investigating O1(2, <B>R</B>) And O1(3, <B>R</B>). 1.6 Cross Product in <STRONG>RQe</STRONG>. 2. Local Theory of Curves. 2.1. Parametrized Curves in <STRONG>RQe</STRONG>. 2.2. Curves in the Plane. 2.3. Curves in Space. 3. Surfaces in Space. 3.1. Basic Topology of Surfaces. 3.2. Casual type of Surfaces, First Fundamental Form. 3.3. Second Fundamental Form and Curvatures. 3.4. The Diagonalization Problem. 3.5. Curves in Surface. 3.6. Geodesics, Variational Methods and Energy. 3.7. The Fundamental Theorem of Surfaces. 4. Abstract Surfaces and Further Topics. 4.1. Pseudo-Riemannian Metrics. 4.2. Riemann's Classification Theorem. 4.3. Split-Complex Numbers and Critical Surfaces. 4.4 Digression: Completeness and Causality</P> | ||
520 | _aLorentz Geometry is a very important intersection between Mathematics and Physics, being the mathematical language of General Relativity. Learning this type of geometry is the first step in properly understanding questions regarding the structure of the universe, such as: What is the shape of the universe? What is a spacetime? What is the relation between gravity and curvature? Why exactly is time treated in a different manner than other spatial dimensions? Introduction to Lorentz Geometry: Curves and Surfaces intends to provide the reader with the minimum mathematical background needed to pursue these very interesting questions, by presenting the classical theory of curves and surfaces in both Euclidean and Lorentzian ambient spaces simultaneously. Features: Over 300 exercises Suitable for senior undergraduates and graduates studying Mathematics and Physics Written in an accessible style without loss of precision or mathematical rigor Solution manual available on www.routledge.com/9780367468644 | ||
588 | _aOCLC-licensed vendor bibliographic record. | ||
650 | 0 | _aGeometry, Differential. | |
650 | 0 | _aLorentz transformations. | |
650 | 0 | _aCurves. | |
650 | 0 | _aSurfaces. | |
650 | 0 | _aMathematical physics. | |
650 | 7 |
_aMATHEMATICS / Arithmetic _2bisacsh |
|
650 | 7 |
_aSCIENCE / Mathematical Physics _2bisacsh |
|
650 | 7 |
_aMATHEMATICS / Geometry / General _2bisacsh |
|
700 | 1 |
_aLymberopoulos, Alexandre, _eauthor. |
|
856 | 4 | 0 |
_3Read Online _uhttps://www.taylorfrancis.com/books/9781003031574 |
856 | 4 | 2 |
_3OCLC metadata license agreement _uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf |
942 |
_2lcc _cEBK |
||
999 |
_c18779 _d18779 |