000 03743cam a2200553Ii 4500
001 9780429203152
003 FlBoTFG
005 20220724194421.0
006 m o d
007 cr cnu|||unuuu
008 191120s2020 flu ob 001 0 eng d
040 _aOCoLC-P
_beng
_erda
_epn
_cOCoLC-P
020 _a9780429203152
_q(electronic bk.)
020 _a0429203152
_q(electronic bk.)
020 _a9780429511738
_q(electronic bk. : PDF)
020 _a0429511736
_q(electronic bk. : PDF)
020 _a9780429515163
_q(electronic bk. : EPUB)
020 _a0429515162
_q(electronic bk. : EPUB)
020 _z9780367195571
035 _a(OCoLC)1128095579
035 _a(OCoLC-P)1128095579
050 4 _aQA402.5
072 7 _aBUS
_x049000
_2bisacsh
072 7 _aMAT
_x000000
_2bisacsh
072 7 _aMAT
_x021000
_2bisacsh
072 7 _aPB
_2bicssc
082 0 4 _a519.6
_223
100 1 _aChallal, Samia,
_eauthor.
245 1 0 _aIntroduction to the theory of optimization in Euclidean space /
_cSamia Challal, Glendon College-York University, Toronto, Canada.
264 1 _aBoca Raton :
_bCRC Press, Taylor & Francis Group,
_c[2020]
264 4 _c©2020
300 _a1 online resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aSeries in operations research
500 _a"A Chapman & Hall book."
520 _aIntroduction to the Theory of Optimization in Euclidean Space is intended to provide students with a robust introduction to optimization in Euclidean space, demonstrating the theoretical aspects of the subject whilst also providing clear proofs and applications. Students are taken progressively through the development of the proofs, where they have the occasion to practice tools of differentiation (Chain rule, Taylor formula) for functions of several variables in abstract situations. Throughout this book, students will learn the necessity of referring to important results established in advanced Algebra and Analysis courses. Features Rigorous and practical, offering proofs and applications of theorems Suitable as a textbook for advanced undergraduate students on mathematics or economics courses, or as reference for graduate-level readers Introduces complex principles in a clear, illustrative fashion
505 0 _a1. Introduction 1.1. Formulation of some optimization problems 1.2. Particular subsets of Rn 1.3. Functions of several variables 2. Unconstrained Optimization 2.1. Necessary condition 2.2. Classification of local extreme points 2.3. Convexity/concavity and global extreme points 2.4. Extreme value theorem 3. Constrained Optimization-Equality constraints 3.1. Tangent plane 3.2. Necessary condition for local extreme points-Equality constraints 3.3. Classification of local extreme points-Equality constraints 3.4. Global extreme points-Equality constraints 4. Constrained Optimization-Inequality constraints 4.1. Cone of feasible directions 4.2. Necessary condition for local extreme points/Inequality constraints 4.3. Classification of local extreme points-Inequality constraints 4.4. Global extreme points-Inequality constraints 4.5. Dependence on parameters
588 _aOCLC-licensed vendor bibliographic record.
650 0 _aMathematical optimization.
650 0 _aEuclidean algorithm.
650 7 _aBUSINESS & ECONOMICS / Operations Research
_2bisacsh
650 7 _aMATHEMATICS / General
_2bisacsh
650 7 _aMATHEMATICS / Number Systems
_2bisacsh
856 4 0 _3Read Online
_uhttps://www.taylorfrancis.com/books/9780429203152
856 4 2 _3OCLC metadata license agreement
_uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
942 _2lcc
_cEBK
999 _c17388
_d17388