000 05764cam a2200625Ii 4500
001 9780429455094
003 FlBoTFG
005 20220724194342.0
006 m o d
007 cr |n|||||||||
008 190225s2019 flua ob 001 0 eng d
040 _aOCoLC-P
_beng
_cOCoLC-P
020 _a9780429455094
_q(electronic bk.)
020 _a0429455097
_q(electronic bk.)
020 _a9780429847691
_q(electronic bk.)
020 _a0429847696
_q(electronic bk.)
020 _a9780429847684
_q(electronic bk. : Mobipocket)
020 _a0429847688
_q(electronic bk. : Mobipocket)
020 _a9780429847707
_q(electronic bk. : PDF)
020 _a042984770X
_q(electronic bk. : PDF)
020 _z1138316822
020 _z9781138316829
035 _a(OCoLC)1088315474
_z(OCoLC)1089235906
035 _a(OCoLC-P)1088315474
050 4 _aTJ808
072 7 _aTEC
_x009070
_2bisacsh
072 7 _aTEC
_x031020
_2bisacsh
072 7 _aSCI
_x024000
_2bisacsh
072 7 _aTEC
_x007000
_2bisacsh
072 7 _aTJF
_2bicssc
082 0 4 _a621.042
_223
245 0 0 _aAnalytics and optimization for renewable energy integration
_h[electronic resource] /
_cNing Zhang, Chongqing Kang, Ershun Du, Yi Wang.
260 _aBoca Raton, FL :
_bCRC Press,
_c2019.
300 _a1 online resource :
_bcolor illustrations
490 1 _aEnergy analytics
505 0 _aCover; Half Title; Title Page; Copyright Page; Dedication; Table of Contents; Preface; List of Abbreviations; I: Mathematical Foundations; 1: Basic Stochastic Mathematics; 1.1 Random Variables, Probability Distribution, and Scenarios; 1.1.1 Random Variables; 1.1.2 Probability Distribution; 1.1.3 Scenario; 1.2 Multivariate Probabilistic Distributions; 1.2.1 Joint Distribution; 1.2.2 Marginal Distribution; 1.2.3 Conditional Distribution; 1.3 Stochastic Process; 1.4 Stochastic Differential Equation; 1.5 Stochastic Optimization; 1.5.1 Two-Stage Stochastic Programming
505 8 _a1.5.2 Chance-constrained stochastic programming1.6 Summary; 2: Copula Theory and Dependent Probabilistic Sequence Operation; 2.1 Introduction; 2.2 Dependencies and Copula Theory; 2.3 Dependent Probabilistic Sequence Operation; 2.4 High-Dimensional DPSO Computation; 2.4.1 Grouping Stage; 2.4.2 Gaussian-Distribution-Based Aggregation Stage; 2.4.3 Small-Scale Sampling Stage; 2.4.4 Recursive Sample-Guided DPSO; 2.4.5 Discussions on Computational Complexity and Error; 2.4.6 Case Study; 2.5 Summary; II: Uncertainty Modeling and Analytics; 3: Long-Term Uncertainty of Renewable Energy Generation
505 8 _a3.1 Overview3.2 Wind Power Long-Term Uncertainty Characteristics; 3.2.1 Power Generation Model of a Wind Turbine; 3.2.2 Probabilistic Distribution of Wind Power; 3.2.3 Spatio-Temporal Correlations of Wind Power Output; 3.2.4 Empirical Study; 3.3 PV Power Long-Term Uncertainty Characteristic; 3.3.1 PV Output Model; 3.3.2 Unshaded Solar Irradiation Model; 3.3.3 Uncertainty Analysis of PV Output; 3.3.4 Spatial Correlation between PV Outputs; 3.4 Summary; 4: Short-Term Renewable Energy Output Forecasting; 4.1 Overview; 4.2 Short-Term Forecasting Framework; 4.2.1 Dataset and Definitions
505 8 _a4.2.2 Proposed Methodology4.3 Improving Forecasting Using Adjustment of MWP; 4.3.1 Wind Power Forecast Engine; 4.3.2 Abnormal Detection; 4.3.3 Data Adjustment Engine; 4.4 Case Study; 4.4.1 Indices for Evaluating the Prediction Accuracy; 4.4.2 Wind Power Forecast Engine; 4.4.3 Abnormal Detection; 4.4.4 Data Adjustment Engine; 4.4.5 Results Analysis; 4.5 Summary; 5: Short-Term Uncertainty of Renewable Energy Generation; 5.1 Overview; 5.2 Wind Power Short-Term Uncertainty Modeling; 5.2.1 Modeling Conditional Error for a Single Wind Farm; 5.2.2 Modeling Conditional Errors for Multiple Wind Farms
505 8 _a5.2.3 Standard Modeling Procedure5.2.4 Discussion; 5.2.5 Empirical Analysis: The U.S. East Coast; 5.3 PV Power Short-Term Uncertainty Modeling; 5.3.1 Effect of Weather Factors on the Conditional Forecast Error of PV; 5.3.2 Standard Modeling Procedure; 5.3.3 Accuracy Analysis; 5.3.4 Empirical Analysis; 5.4 Summary; 6: Renewable Energy Output Simulation; 6.1 Overview; 6.2 Multiple Wind Farm Output Simulation; 6.2.1 Historical Wind Speed Data Processing; 6.2.2 Generating Wind Speed Time Series; 6.2.3 Calculating Wind Turbine Output; 6.2.4 Wind Turbine Reliability Model and Wake Effect
520 _aThe scope of this book covers the modeling and forecast of renewable energy and operation and planning of power system with renewable energy integration.The first part presents mathematical theories of stochastic mathematics; the second presents modeling and analytic techniques for renewable energy generation; the third provides solutions on how to handle the uncertainty of renewable energy in power system operation. It includes advanced stochastic unit commitment models to acquire the optimal generation schedule under uncertainty, efficient algorithms to calculate the probabilistic power, and an efficient operation strategy for renewable power plants participating in electricity markets.
588 _aOCLC-licensed vendor bibliographic record.
650 0 _aRenewable resource integration.
650 0 _aRenewable energy sources.
650 7 _aTECHNOLOGY & ENGINEERING / Mechanical.
_2bisacsh
650 7 _aSCIENCE / Energy
_2bisacsh
650 7 _aTECHNOLOGY / Electricity
_2bisacsh
700 1 _aZhang, Ning,
_eauthor.
700 1 _aKang, Chongqing,
_eauthor.
700 1 _aDu, Ershun,
_eauthor.
700 1 _aWang, Yi,
_eauthor.
856 4 0 _3Read Online
_uhttps://www.taylorfrancis.com/books/9780429455094
856 4 2 _3OCLC metadata license agreement
_uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
942 _2lcc
_cEBK
999 _c16631
_d16631