000 04958cam a2200649Mu 4500
001 9780429344374
003 FlBoTFG
005 20220724194246.0
006 m d
007 cr cnu---unuuu
008 191130s2019 xx o 000 0 eng d
040 _aOCoLC-P
_beng
_cOCoLC-P
020 _a9781000725865
020 _a1000725863
020 _a9781000725988
_q(ePub ebook)
020 _a1000725987
020 _a9781000725926
_q(Mobipocket ebook)
020 _a1000725928
020 _a9780429344374
_q(ebook)
020 _a0429344376
020 _z0367345471
020 _z9780367345471
024 7 _a10.1201/9780429344374
_2doi
035 _a(OCoLC)1129224261
_z(OCoLC)1129166315
035 _a(OCoLC-P)1129224261
050 4 _aQA374
072 7 _aMAT
_x029020
_2bisacsh
072 7 _aMAT
_x041000
_2bisacsh
072 7 _aMAT
_x007020
_2bisacsh
072 7 _aPBKS
_2bicssc
082 0 4 _a515.353
_223
100 1 _aAtkinson, Kendall E.
245 1 0 _aSpectral Methods Using Multivariate Polynomials on the Unit Ball
_h[electronic resource].
260 _aMilton :
_bCRC Press LLC,
_c2019.
300 _a1 online resource (275 p.).
336 _atext
_2rdacontent
336 _astill image
_2rdacontent
337 _acomputer
_2rdamedia
338 _aonline resource
_2rdacarrier
490 1 _aChapman and Hall/CRC Monographs and Research Notes in Mathematics Ser.
500 _aDescription based upon print version of record.
505 0 _aCover; Half Title; Series Page; Title Page; Copyright Page; Dedication; Contents; Preface; 1. Introduction; 1.1 An illustrative example; 1.2 Transformation of the problem; 1.3 Function spaces; 1.4 Variational reformulation; 1.5 A spectral method; 1.6 A numerical example; 1.7 Exterior problems; 1.7.1 Exterior problems in R3; 2. Multivariate Polynomials; 2.1 Multivariate polynomials; 2.2 Triple recursion relation; 2.3 Rapid evaluation of orthonormal polynomials; 2.3.1 Evaluating derivatives for the planar case; 2.3.2 Evaluating derivatives for the three-dimensional case
505 8 _a5. Eigenvalue Problems5.1 Numerical solution -- Dirichlet problem; 5.2 Numerical examples -- Dirichlet problem; 5.3 Convergence analysis -- Dirichlet problem; 5.4 Numerical solution -- Neumann problem; 5.4.1 Numerical examples -- Neumann problem; 6. Parabolic Problems; 6.1 Reformulation and numerical approximation; 6.1.1 Implementation; 6.2 Numerical examples; 6.2.1 An example in three dimensions; 6.3 Convergence analysis; 6.3.1 Further comments; 7. Nonlinear Equations; 7.1 A spectral method for the nonlinear Dirichlet problem; 7.2 Numerical examples; 7.2.1 A three-dimensional example
505 8 _a7.3 Convergence analysis7.3.1 A nonhomogeneous boundary condition; 7.4 Neumann boundary value problem; 7.4.1 Implementation; 7.4.2 Numerical example; 7.4.3 Handling a nonzero Neumann condition; 8. Nonlinear Neumann Boundary Value Problems; 8.1 The numerical method; 8.1.1 Solving the nonlinear system; 8.2 Numerical examples; 8.2.1 Another planar example; 8.2.2 Two three-dimensional examples; 8.3 Error analysis; 8.3.1 The linear Neumann problem; 8.3.2 The nonlinear Neumann problem; 8.3.3 The error over; 8.3.4 A nonhomogeneous boundary value problem
500 _a8.4 An existence theorem for the three-dimensional Stefan-Boltzmann problem
520 _aSpectral Methods Using Multivariate Polynomials on the Unit Ball is a research level text on a numerical method for the solution of partial differential equations. The authors introduce, illustrate with examples, and analyze 'spectral methods' that are based on multivariate polynomial approximations. The method presented is an alternative to finite element and difference methods for regions that are diffeomorphic to the unit disk, in two dimensions, and the unit ball, in three dimensions. The speed of convergence of spectral methods is usually much higher than that of finite element or finite difference methods. Features Introduces the use of multivariate polynomials for the construction and analysis of spectral methods for linear and nonlinear boundary value problems Suitable for researchers and students in numerical analysis of PDEs, along with anyone interested in applying this method to a particular physical problem One of the few texts to address this area using multivariate orthogonal polynomials, rather than tensor products of univariate polynomials.
588 _aOCLC-licensed vendor bibliographic record.
650 0 _aDifferential equations, Partial.
650 0 _aMultivariate analysis.
650 0 _aPolynomials.
650 7 _aMATHEMATICS / Probability & Statistics / Multivariate Analysis
_2bisacsh
700 1 _aChien, David.
700 1 _aHansen, Olaf.
856 4 0 _3Read Online
_uhttps://www.taylorfrancis.com/books/9780429344374
856 4 2 _3OCLC metadata license agreement
_uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
942 _2lcc
_cEBK
999 _c15537
_d15537