Image from Google Jackets

Surrogates : Gaussian process modeling, design, and optimization for the applied sciences / Robert B. Gramacy.

By: Material type: TextTextSeries: Publisher: Boca Raton, FL : CRC Press, [2020]Description: 1 online resource (xv, 543 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780367815493
  • 0367815494
  • 9781000766523
  • 1000766527
  • 9781000766202
  • 1000766209
  • 9781000766363
  • 1000766365
Subject(s): DDC classification:
  • 519.8/2 23
LOC classification:
  • QA274.4 .G73 2020
Online resources:
Contents:
Historical perspective -- Four motivating datasets -- Steepest ascent and ridge analysis -- Space-filling design -- Gaussian process regression -- Model-based design for GPs -- Optimization -- Calibration and sensitivity -- GP fidelity and scale -- Heteroskedasticity.
Summary: "Surrogates: a graduate textbook, or professional handbook, on topics at the interface between machine learning, spatial statistics, computer simulation, meta-modeling (i.e., emulation), design of experiments, and optimization. Experimentation through simulation, "human out-of-the-loop" statistical support (focusing on the science), management of dynamic processes, online and real-time analysis, automation, and practical application are at the forefront. Topics include: Gaussian process (GP) regression for flexible nonparametric and nonlinear modeling. Applications to uncertainty quantification, sensitivity analysis, calibration of computer models to field data, sequential design/active learning and (blackbox/Bayesian) optimization under uncertainty. Advanced topics include treed partitioning, local GP approximation, modeling of simulation experiments (e.g., agent-based models) with coupled nonlinear mean and variance (heteroskedastic) models. Treatment appreciates historical response surface methodology (RSM) and canonical examples, but emphasizes contemporary methods and implementation in R at modern scale. Rmarkdown facilitates a fully reproducible tour, complete with motivation from, application to, and illustration with, compelling real-data examples. Presentation targets numerically competent practitioners in engineering, physical, and biological sciences. Writing is statistical in form, but the subjects are not about statistics. Rather, they're about prediction and synthesis under uncertainty; about visualization and information, design and decision making, computing and clean code"-- Provided by publisher.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

"A Chapman & Hall Book" -- Title page."

Historical perspective -- Four motivating datasets -- Steepest ascent and ridge analysis -- Space-filling design -- Gaussian process regression -- Model-based design for GPs -- Optimization -- Calibration and sensitivity -- GP fidelity and scale -- Heteroskedasticity.

"Surrogates: a graduate textbook, or professional handbook, on topics at the interface between machine learning, spatial statistics, computer simulation, meta-modeling (i.e., emulation), design of experiments, and optimization. Experimentation through simulation, "human out-of-the-loop" statistical support (focusing on the science), management of dynamic processes, online and real-time analysis, automation, and practical application are at the forefront. Topics include: Gaussian process (GP) regression for flexible nonparametric and nonlinear modeling. Applications to uncertainty quantification, sensitivity analysis, calibration of computer models to field data, sequential design/active learning and (blackbox/Bayesian) optimization under uncertainty. Advanced topics include treed partitioning, local GP approximation, modeling of simulation experiments (e.g., agent-based models) with coupled nonlinear mean and variance (heteroskedastic) models. Treatment appreciates historical response surface methodology (RSM) and canonical examples, but emphasizes contemporary methods and implementation in R at modern scale. Rmarkdown facilitates a fully reproducible tour, complete with motivation from, application to, and illustration with, compelling real-data examples. Presentation targets numerically competent practitioners in engineering, physical, and biological sciences. Writing is statistical in form, but the subjects are not about statistics. Rather, they're about prediction and synthesis under uncertainty; about visualization and information, design and decision making, computing and clean code"-- Provided by publisher.

OCLC-licensed vendor bibliographic record.

There are no comments on this title.

to post a comment.

To Reach Us

0206993118
amiu.library@amref.ac.ke

Our Location

Lang’ata Road, opposite Wilson Airport
PO Box 27691 – 00506,   Nairobi, Kenya

Social Networks

Powered by Koha