Image from Google Jackets

Introduction to ultrafast phenomena : from femtosecond magnetism to high-harmonic generation / Guo-ping Zhang, Georgios Lefkidis, Mitsuko Murakami, Wolfgang Hübner, Thomas F. George.

By: Contributor(s): Material type: TextTextPublisher: Boca Raton : CRC Press, 2021Description: 1 online resource : illustrationsContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780429531927
  • 0429531923
  • 9780429194832
  • 0429194838
  • 9780429546624
  • 0429546629
  • 9781498764292
  • 1498764290
Subject(s): DDC classification:
  • 621.366 23
LOC classification:
  • QC689.5.L37
Online resources: Summary: This book, the first of this kind, provides a comprehensive introduction to ultrafast phenomena, covering the fundamentals of ultrafast spin and charge dynamics, femtosecond magnetism, all-optical spin switching, and high-harmonic generation. It covers the experimental tools, including ultrafast pump-probe experiments, and theoretical methods including quantum chemistry and density functional theory, both time-independent and time-dependent. The authors explain in clear language how an ultrafast laser pulse is generated experimentally, how it can induce rapid responses in electrons and spins in molecules, nanostructures and solids (magnetic materials and superconductors), and how it can create high-harmonic generation from atoms and solids on the attosecond timescale. They also show how this field is driving the next generation of magnetic storage devices through femtomagnetism, all-optical spin switching in ferrimagnets and beyond, magnetic logic in magnetic molecules, and ultrafast intense light sources, incorporating numerous computer programs, examples, and problems throughout, to show how the beautiful research can be done behind the scene. Key features: Provides a clear introduction to modern ultrafast phenomena and their applications in physics, chemistry, materials sciences, and engineering. Presents in detail how high-harmonic generation occurs in atoms and solids. Explains ultrafast demagnetization and spin switching, a new frontier for development of faster magnetic storage devices. Includes numerous worked-out examples and problems in each chapter, with real research codes in density functional theory and quantum chemical calculations provided in the chapters and in the Appendices. This book is intended for undergraduate and graduate students, researchers in physics, chemistry, biology, materials sciences, and engineering.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

This book, the first of this kind, provides a comprehensive introduction to ultrafast phenomena, covering the fundamentals of ultrafast spin and charge dynamics, femtosecond magnetism, all-optical spin switching, and high-harmonic generation. It covers the experimental tools, including ultrafast pump-probe experiments, and theoretical methods including quantum chemistry and density functional theory, both time-independent and time-dependent. The authors explain in clear language how an ultrafast laser pulse is generated experimentally, how it can induce rapid responses in electrons and spins in molecules, nanostructures and solids (magnetic materials and superconductors), and how it can create high-harmonic generation from atoms and solids on the attosecond timescale. They also show how this field is driving the next generation of magnetic storage devices through femtomagnetism, all-optical spin switching in ferrimagnets and beyond, magnetic logic in magnetic molecules, and ultrafast intense light sources, incorporating numerous computer programs, examples, and problems throughout, to show how the beautiful research can be done behind the scene. Key features: Provides a clear introduction to modern ultrafast phenomena and their applications in physics, chemistry, materials sciences, and engineering. Presents in detail how high-harmonic generation occurs in atoms and solids. Explains ultrafast demagnetization and spin switching, a new frontier for development of faster magnetic storage devices. Includes numerous worked-out examples and problems in each chapter, with real research codes in density functional theory and quantum chemical calculations provided in the chapters and in the Appendices. This book is intended for undergraduate and graduate students, researchers in physics, chemistry, biology, materials sciences, and engineering.

OCLC-licensed vendor bibliographic record.

There are no comments on this title.

to post a comment.

To Reach Us

0206993118
amiu.library@amref.ac.ke

Our Location

Lang’ata Road, opposite Wilson Airport
PO Box 27691 – 00506,   Nairobi, Kenya

Social Networks

Powered by Koha