Bayesian approaches in oncology using R and OpenBUGS [electronic resource] / Atanu Bhattacharjee.
Material type: TextPublisher: Boca Raton : Chapman & Hall/CRC, 2020Description: 1 online resourceContent type:- text
- still image
- computer
- online resource
- 9781000329988
- 1000329984
- 9780429329449
- 042932944X
- 9781000330069
- 1000330060
- 9781000330021
- 1000330028
- 519.542 23
- QA279.5
Bayesian Approaches in Oncology Using R and OpenBUGS serves two audiences: those who are familiar with the theory and applications of bayesian approach and wish to learn or enhance their skills in R and OpenBUGS, and those who are enrolled in R and OpenBUGS-based course for bayesian approach implementation. For those who have never used R/OpenBUGS, the book begins with a self-contained introduction to R that lays the foundation for later chapters. Many books on the bayesian approach and the statistical analysis are advanced, and many are theoretical. While most of them do cover the objective, the fact remains that data analysis can not be performed without actually doing it, and this means using dedicated statistical software. There are several software packages, all with their specific objective. Finally, all packages are free to use, are versatile with problem-solving, and are interactive with R and OpenBUGS. This book continues to cover a range of techniques related to oncology that grow in statistical analysis. It intended to make a single source of information on Bayesian statistical methodology for oncology research to cover several dimensions of statistical analysis. The book explains data analysis using real examples and includes all the R and OpenBUGS codes necessary to reproduce the analyses. The idea is to overall extending the Bayesian approach in oncology practice. It presents four sections to the statistical application framework: Bayesian in Clinical Research and Sample Size Calcuation Bayesian in Time-to-Event Data Analysis Bayesian in Longitudinal Data Analysis Bayesian in Diagnostics Test Statistics This book is intended as a first course in bayesian biostatistics for oncology students. An oncologist can find useful guidance for implementing bayesian in research work. It serves as a practical guide and an excellent resource for learning the theory and practice of bayesian methods for the applied statistician, biostatistician, and data scientist.
OCLC-licensed vendor bibliographic record.
There are no comments on this title.