Image from Google Jackets

Physics of magnetic thin films : theory and simulation / Hung T. Diep.

By: Material type: TextTextPublisher: Singapore : Jenny Stanford Publishing, 2021Description: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781000260687
  • 1000260682
  • 1000260747
  • 9781000260717
  • 1000260712
  • 9781003121107
  • 1003121101
  • 9781000260748
Subject(s): DDC classification:
  • 530.4175 23
LOC classification:
  • QC176.84.M3 D54 2021
Online resources:
Contents:
Spin -- Origin of Magnetism. Mean-Field Theory of Magnetic Materials. Theory of Spin Waves. Green's Function Theory in Magnetism. Theory of Phase Transitions and Critical Phenomena. Monte Carlo Simulation: Principle and Implementation. Exactly Solved Frustrated Models in Two Dimensions. Spin-Wave Theory for Thin Films. Frustrated Thin Films of Antiferromagnetic FCC Lattice. Heisenberg Thin Films with Frustrated Surfaces. Phase Transition in Helimagnetic Thin Films. Helimagnetic Thin Films in a Field. Spin Waves in Systems with Dzyaloshinskii-Moriya Interaction. Skyrmions in Thin Films. Skyrmions in Superlattices. Thin Films and Criticality. Spin Resistivity in Thin Films. Solutions of Exercises and Problems.
Summary: This book is for graduate students and researchers who wish to understand theoretical mechanisms lying behind macroscopic properties of magnetic thin films. It provides a detailed description of basic theoretical methods and techniques of simulation to help readers in their research projects. The first part of the book contains 6 chapters. Chapters 1 to 5 focus on the fundamental theory of bulk magnetic materials. Chapter 6 is devoted to the presentation of the Monte Carlo simulation methods. Exercises and problems are provided at the end of each of these chapters for self-training. The second part contains 11 chapters devoted to the main topic of the book, namely physics of magnetic thin films: theory and simulation. Written as a research paper, each chapter focuses on a subject and also presents the state-of-the-art literature on the subject and the motivation of the chapter. A detailed description of the techniques and the presentation of the results are then shown with discussion.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Spin -- Origin of Magnetism. Mean-Field Theory of Magnetic Materials. Theory of Spin Waves. Green's Function Theory in Magnetism. Theory of Phase Transitions and Critical Phenomena. Monte Carlo Simulation: Principle and Implementation. Exactly Solved Frustrated Models in Two Dimensions. Spin-Wave Theory for Thin Films. Frustrated Thin Films of Antiferromagnetic FCC Lattice. Heisenberg Thin Films with Frustrated Surfaces. Phase Transition in Helimagnetic Thin Films. Helimagnetic Thin Films in a Field. Spin Waves in Systems with Dzyaloshinskii-Moriya Interaction. Skyrmions in Thin Films. Skyrmions in Superlattices. Thin Films and Criticality. Spin Resistivity in Thin Films. Solutions of Exercises and Problems.

This book is for graduate students and researchers who wish to understand theoretical mechanisms lying behind macroscopic properties of magnetic thin films. It provides a detailed description of basic theoretical methods and techniques of simulation to help readers in their research projects. The first part of the book contains 6 chapters. Chapters 1 to 5 focus on the fundamental theory of bulk magnetic materials. Chapter 6 is devoted to the presentation of the Monte Carlo simulation methods. Exercises and problems are provided at the end of each of these chapters for self-training. The second part contains 11 chapters devoted to the main topic of the book, namely physics of magnetic thin films: theory and simulation. Written as a research paper, each chapter focuses on a subject and also presents the state-of-the-art literature on the subject and the motivation of the chapter. A detailed description of the techniques and the presentation of the results are then shown with discussion.

OCLC-licensed vendor bibliographic record.

There are no comments on this title.

to post a comment.

To Reach Us

0206993118
amiu.library@amref.ac.ke

Our Location

Lang’ata Road, opposite Wilson Airport
PO Box 27691 – 00506,   Nairobi, Kenya

Social Networks

Powered by Koha